Những câu hỏi liên quan
asuna
Xem chi tiết
Bảo Ngọc
Xem chi tiết
Văn Trọng Khôi
Xem chi tiết
bach nhac lam
Xem chi tiết
tthnew
11 tháng 11 2019 lúc 20:40

2/ Không mất tính tổng quát, giả sử \(c=min\left\{a,b,c\right\}\).

Nếu abc = 0 thì có ít nhất một số bằng 0. Giả sử c = 0. BĐT quy về: \(a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Đẳng thức xảy ra khi a = b; c = 0.

Nếu \(abc\ne0\). Chia hai vế của BĐT cho \(\sqrt[3]{\left(abc\right)^2}\)

BĐT quy về: \(\Sigma_{cyc}\sqrt[3]{\frac{a^4}{b^2c^2}}+3\ge2\Sigma_{cyc}\sqrt[3]{\frac{ab}{c^2}}\)

Đặt \(\sqrt[3]{\frac{a^2}{bc}}=x;\sqrt[3]{\frac{b^2}{ca}}=y;\sqrt[3]{\frac{c^2}{ab}}=z\Rightarrow xyz=1\)

Cần chúng minh: \(x^2+y^2+z^2+3\ge2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\Leftrightarrow x^2+y^2+z^2+2xyz+1\ge2\left(xy+yz+zx\right)\) (1)

Theo nguyên lí Dirichlet thì trong 3 số x - 1, y - 1, z - 1 tồn tại ít nhất 2 số có tích không âm. Không mất tính tổng quát, giả sử \(\left(x-1\right)\left(y-1\right)\ge0\)

\(\Rightarrow2xyz\ge2xz+2yz-2z\). Thay vào (1):

\(VT\ge x^2+y^2+z^2+2xz+2yz-2z+1\)

\(=\left(x-y\right)^2+\left(z-1\right)^2+2xy+2xz+2yz\)

\(\ge2\left(xy+yz+zx\right)\)

Vậy (1) đúng. BĐT đã được chứng minh.

Đẳng thức xảy ra khi a = b = c hoặc a = b, c = 0 và các hoán vị.

Check giúp em vs @Nguyễn Việt Lâm, bài dài quá:(

Bình luận (0)
 Khách vãng lai đã xóa
tthnew
6 tháng 7 2020 lúc 7:23

Cách khác câu 2:Đặt \(\left(a,b,c\right)=\left(a^3,b^3,c^3\right)\)

Có: \(VT-VP=\frac{1}{6} \sum\, \left( 3\,{a}^{2}+4\,ab+2\,ac+3\,{b}^{2}+2\,bc \right) \left( a -b \right) ^{2} \left( a+b-c \right) ^{2}+\frac{2}{3} \sum \,{a}^{2}{b}^{2} \left( a -b \right) ^{2} \geq 0\)

Bất đẳng thức trên vẫn đúng trong trường hợp $a,b,c$ là các số thực.

Thật vậy ta chỉ cần chứng minh$:$

\(\frac{1}{6}\sum \left( 3\,{a}^{2}+4\,ab+2\,ac+3\,{b}^{2}+2\,bc \right) \left( a -b \right) ^{2} \left( a+b-c \right) ^{2} \geq 0\)

Chú ý \(\sum\left(a-b\right)\left(a+b-c\right)=0\)

Ta đưa về chứng minh: \(\sum (3\,{a}^{2}+4\,ab+2\,ac+3\,{b}^{2}+2\,bc) \geq 0 \,\,\,\,\,\,(1)\)

\(\sum \left( 3\,{a}^{2}+2\,ab+4\,ac+2\,bc+3\,{c}^{2} \right) \left( 3\,{a} ^{2}+4\,ab+2\,ac+3\,{b}^{2}+2\,bc \right) \geq 0 \,\,\,\,(2)\)

$(1)$ dễ chứng minh bằng tam thức bậc $2$.

Chứng minh $(2):$

$$\text{VT} = {\frac {196\, \left( a+b+c \right) ^{4}}{27}} + \sum{\frac { \left( a-b \right) ^{2} \left( 47\,a+26\,c+47\,b \right) ^{2}
}{2538}}+\sum {\frac {328\,{c}^{2} \left( a-b \right) ^{2}}{141}} \geq 0$$

Xong.

Bình luận (0)
Lê Tài Bảo Châu
Xem chi tiết
Kiệt Nguyễn
1 tháng 8 2020 lúc 8:33

Xét \(\frac{a^3}{a^2+ab+b^2}-\frac{b^3}{a^2+ab+b^2}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=a-b\)

Tương tự, ta được: \(\frac{b^3}{b^2+bc+c^2}-\frac{c^3}{b^2+bc+c^2}=b-c\)\(\frac{c^3}{c^2+ca+a^2}-\frac{a^3}{c^2+ca+a^2}=c-a\)

Cộng theo vế của 3 đẳng thức trên, ta được: \(\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\)\(-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\right)=0\)

\(\Rightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\)\(=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)

Ta đi chứng minh BĐT phụ sau: \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\)(*)

Thật vậy: (*)\(\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\ge0\)*đúng*

\(\Rightarrow2LHS=\Sigma_{cyc}\frac{a^3+b^3}{a^2+ab+b^2}=\Sigma_{cyc}\text{ }\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\)\(\ge\Sigma_{cyc}\text{ }\frac{\frac{1}{3}\left(a+b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=\frac{1}{3}\text{​​}\Sigma_{cyc}\left[\left(a+b\right)\right]=\frac{2\left(a+b+c\right)}{3}\)

\(\Rightarrow LHS\ge\frac{a+b+c}{3}=RHS\)(Q.E.D)

Đẳng thức xảy ra khi a = b = c

P/S: Có thể dùng BĐT phụ ở câu 3a để chứng minhxD:

Bình luận (0)
 Khách vãng lai đã xóa
Phùng Minh Quân
27 tháng 7 2020 lúc 22:28

1) ta chứng minh được \(\Sigma\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}=\Sigma\frac{b^4}{\left(a+b\right)\left(a^2+b^2\right)}\)

\(VT=\frac{1}{2}\Sigma\frac{a^4+b^4}{\left(a+b\right)\left(a^2+b^2\right)}\ge\frac{1}{4}\Sigma\frac{a^2+b^2}{a+b}\ge\frac{1}{8}\Sigma\left(a+b\right)=\frac{a+b+c+d}{4}\)

bài 2 xem có ghi nhầm ko

Bình luận (0)
 Khách vãng lai đã xóa
Phùng Minh Quân
27 tháng 7 2020 lúc 22:50

3a biến đổi tí là xong

b tuong tự bài 1 

Bình luận (0)
 Khách vãng lai đã xóa
bach nhac lam
Xem chi tiết
Ngô Bá Hùng
29 tháng 10 2019 lúc 9:09

Ta có:

\(\left(a+b+c\right)\left[\frac{a}{\left(b+c\right)^2}+\frac{b}{\left(c+a\right)^2}+\frac{c}{\left(a+b\right)^2}\right]\\=\left[\left(\sqrt{a}\right)^2+\left(\sqrt{b}\right)^2+\left(\sqrt{c}\right)^2\right]\left[\left(\frac{\sqrt{a}}{b+c}\right)^2+\left(\frac{\sqrt{b}}{b+c}\right)^2+\left(\frac{\sqrt{c}}{a+c}\right)^2\right]\ge\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)^2\)

Mà ta có:

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\) (BĐT Nesbit)

\(\Rightarrow\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)^2\ge\frac{9}{4}\\ \Rightarrow\left(a+b+c\right)\left[\frac{a}{\left(b+c\right)^2}+\frac{b}{\left(c+a\right)^2}+\frac{c}{\left(a+b\right)^2}\right]\ge\frac{9}{4}\)

\(\Rightarrow\frac{a}{\left(b+c\right)^2}+\frac{b}{\left(c+a\right)^2}+\frac{c}{\left(a+b\right)^2}\ge\frac{9}{4\left(a+b+c\right)}\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
zZz Cool Kid zZz
5 tháng 11 2019 lúc 21:45

\(\left(a+b+c\right)\left[\frac{a}{\left(b+c\right)^2}+\frac{b}{\left(c+a\right)^2}+\frac{c}{\left(a+b\right)^2}\right]\)

\(=\left(\frac{a}{b+c}\right)^2+\left(\frac{b}{c+a}\right)^2+\left(\frac{c}{a+b}\right)^2+\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

\(=\left(\frac{a}{b+c}\right)^2+\frac{1}{4}+\left(\frac{b}{c+a}\right)^2+\frac{1}{4}+\left(\frac{c}{a+b}\right)^2+\frac{1}{4}+\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)-\frac{3}{4}\)

\(\ge2\cdot\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)-\frac{3}{4}=\frac{9}{4}\) ( dpcm )

Bình luận (0)
 Khách vãng lai đã xóa
tthnew
7 tháng 11 2019 lúc 16:23

Ad Lâm chuẩn hóa a + b + c = 3 rồi nên em chuẩn hóa a + b + c = 1 nha:D

Chuẩn hóa a + b + c = 1 \(\Rightarrow0< a,b,c< 1\)

BĐT quy về: \(\Sigma\frac{a}{\left(1-a\right)^2}\ge\frac{9}{4}\)

Ta chứng minh BĐT phụ sau:

\(\frac{a}{\left(1-a\right)^2}\ge\frac{9}{2}a-\frac{3}{4}\Leftrightarrow\frac{\left(27-18x\right)\left(x-\frac{1}{3}\right)^2}{4\left(1-x\right)^2}\ge0\)(đúng)

Thiết lập tương tự các BĐT còn lại và cộng theo vế thu được đpcm:)

Bình luận (0)
 Khách vãng lai đã xóa
khoimzx
Xem chi tiết
khoimzx
23 tháng 5 2020 lúc 18:05

câu 6 là với mọi a,b,c lớn hơn hoặc bằng 1 nhé

Bình luận (0)
khoimzx
23 tháng 5 2020 lúc 18:38

help me !!!!!!

Bình luận (0)
Lê Tài Bảo Châu
Xem chi tiết
zZz Cool Kid_new zZz
8 tháng 1 2020 lúc 21:49

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\)

\(=abc+a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+abc+abc\)

\(=\left(a+b+c\right)\left(ab+bc+ca\right)\)( phân tích nhân tử các kiểu )

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(a+b+c\right)\left(ab+bc+ca\right)-abc\left(1\right)\)

\(a+b+c\ge3\sqrt[3]{abc};ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)

\(\Rightarrow-abc\ge\frac{-\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)

Khi đó:\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)

\(=\frac{8\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\left(2\right)\)

Từ ( 1 ) và ( 2 ) có đpcm

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Thùy Chi
Xem chi tiết
 Mashiro Shiina
7 tháng 3 2020 lúc 12:16

Hỏi đáp Toán

Bình luận (0)
 Khách vãng lai đã xóa